Corrosion and Magnetization Analyses of Iron Encapsulated Aluminum Particles by Numerical Simulations

Author:

Guo Jing,Sun Ruochen,Qi Hui,Lv Fangwei

Abstract

In this study, the effects of corrosion and magnetization on iron (Fe) encapsulated aluminum (Al) particles were uncovered through the assistance of molecular dynamic (MD) simulations and finite element analysis (FEA). The corrosion of metal particles with two phases was designed to be surrounded by O2 or H2O molecules. Next, the magnetization was simulated to be under a constant magnetic field. According to the obtained results, a portion of O2 molecules did not react with Fe atoms. They were actually adsorbed on the particle surface and the adsorption eventually reached a saturated state. However, the saturated effect did not appear to be due to the oxidation behavior of other O2 molecules. Both oxidation and adsorption effects released pressure on Fe atoms and caused different extents of displacements. Next, a similar saturated effect was also observed for adsorbed H2O molecules. At the same time, other reacted H2O molecules produced a significant amount of OH− and caused charge transfer from Fe atoms. Additionally, the geometrical distribution of particles’ magnetic flux density and magnetization intensity were also studied.

Funder

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3