HVOF Sprayed Fe-Based Wear-Resistant Coatings with Carbide Reinforcement, Synthesized In Situ and by Mechanically Activated Synthesis

Author:

Tkachivskyi DmytroORCID,Juhani Kristjan,Surženkov AndreiORCID,Kulu Priit,Tesař Tomáš,Mušálek RadekORCID,Lukáč FrantišekORCID,Antoš Jakub,Vostřák Marek,Antonov MaksimORCID,Goljandin Dmitri

Abstract

The aims of this study were: (1) to produce composite coatings by high velocity oxy fuel (HVOF) spraying with steel matrix reinforced by cermets (a) Cr3C2–20%Ni and (b) TiC–20%NiMo, manufactured by mechanically activated synthesis (MAS); (2) to synthesize in situ a carbide reinforcement for iron matrix from a mixture of titanium and carbon during HVOF reactive thermal spraying (RTS); (3) to compare the wear resistance of produced coatings. As a reference, HVOF sprayed coatings from commercial Cr3C2–25%NiCr (Amperit 588.074) and AISI 316L were utilized. Study of microstructure revealed the inhomogeneity of the Cr-based MAS coating; the Ti-based MAS coating had typical carbide granular structure, and the Ti-based RTS coating possessed elongated structures of TiC. The X-ray diffraction revealed two main phases in the Cr-based MAS coating: Cr3C2 and austenite, and two phases in the Ti-based coatings: TiC and austenite. Among the studied coatings, the Cr-based MAS coating demonstrated the highest low-force hardness (490 HV0.3). During the abrasive rubber wheel test (ASTM G65), the Ti-based MAS coating showed the best wear resistance, followed by Cr3C2–25%NiCr and Ti-based RTS coating. In the abrasive–erosive test (GOST 23.201-78), the Ti-based MAS coating was 44% better than Cr3C2–25%NiCr coating. The Ti-based RTS coating was 11% more wear resistant than the reference Cr3C2–25%NiCr coating.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference33 articles.

1. Introduction to Applications for Thermal Spray Processing;Davis,2004

2. Wear resistance of HVOF sprayed coatings from mechanically activated thermally synthesized Cr3C2–Ni spray powder

3. Production of titanium tetrachloride (TiCl4) from titanium ores: A review;Bordbar;Polyolefins J.,2017

4. Removal of Iron from Titanium Ore through Selective Chlorination Using Magnesium Chloride

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3