Effects of Compound Use of Two UV Coating Microcapsules on the Physicochemical, Optical, Mechanical, and Self-Healing Performance of Coatings on Fiberboard Surfaces

Author:

Zou Yuming12,Xia Yongxin12,Yan Xiaoxing12

Affiliation:

1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

2. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

Abstract

Ultraviolet (UV) coatings are widely used because of their good performance. However, the self-healing performance of UV coatings can be further improved. Microcapsule technology can be used to solve this problem. To investigate the effects of the compound use of two UV coating microcapsules on coatings of a fiberboard surface, three kinds of UV primer microcapsules (1#, 2#, and 3# microcapsules) with different contents were added to a UV primer, and a UV top coating was prepared with UV top coating microcapsules at a consistent ratio. The UV coating was used to coat the fiberboard surface by way of a two-primer and two-top coating method. The results show that as the content of the UV primer microcapsules was increased, the self-healing rates of all three groups of coatings increased and later decreased. The color difference ΔE of coatings with the content of the UV primer microcapsules at 4.0% and top coating microcapsules at 6.0% was 3.59, the gloss was 1.33 GU, the reflectance was 21.17%, the adhesion grade was 2, the hardness was 2H, the impact resistance grade was 5, the roughness was 1.085 μm, and the self-healing rate was 30.21%. Compared with the self-healing rate of the blank control group, the increase in the self-healing rate was 10.07%, and the improvement rate was 50.00%. The comprehensive performance of the coating was better. The results provide a technical reference for the application of the UV coating microcapsules in the UV coating on fiberboard surfaces. Incorporating the self-healing UV coating microcapsules into the UV coatings and applying the UV coating microcapsules on the fiberboard surfaces supports the microcapsule technology of self-healing UV coatings, lays the foundation for extending the service life of furniture while improving the furniture’s quality, and promotes the sustainable development of the coating industry.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3