Evolution of the Microstructure and Mechanical Properties of a Biomedical Ti-20Zr-40Ta Alloy during Aging Treatment

Author:

Wu Xueqing1ORCID,Yang Kun2,Cheng Jun3,Lin Jianguo2

Affiliation:

1. School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China

2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

3. Northwest Institute for Nonferrous Metal Research, Shaanxi Key Laboratory of Biomedical Metal Materials, Xi’an 710016, China

Abstract

The research focus in the field of medical titanium alloys has recently shifted towards the development of low-modulus and high-strength titanium alloys. In this study, the influence of aging temperature on the microstructure and mechanical properties of a β-type Ti-20Zr-40Ta alloy (TZT) was investigated. It was found that the recovery and the recrystallization occurred in the as-rolled alloy depended on the aging temperature. The periodically distributed Ta-lean phase (β1) and Ta-rich phase (β2) were produced by the spinodal decomposition in all the samples aged at different temperatures. The spinodal decomposition significantly influenced the mechanical properties and deformation mechanisms of the TZT alloy. Upon aging at 650 °C and 750 °C, the as-rolled alloy exhibited a double-yield phenomenon during tensile testing, indicating a stress-induced martensitic transformation; however, its ductility was limited due to the presence of ω phases. Conversely, aging at 850 °C resulted in an alloy with high strength and good ductility, which was potentially attributed to the enhanced strength resulting from modulated structures introduced with spinodal decomposition.

Funder

Doctor Foundation of Guizhou Normal University

National Natural Science Foundation of China

Key Research and Development Program of Shaanxi

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3