Effects of Surface Microstructures on Superhydrophobic Properties and Oil-Water Separation Efficiency

Author:

Chen Yangyang,Yang Shengke,Zhang Qian,Zhang Dan,Yang Chunyan,Wang Zongzhou,Wang Runze,Song Rong,Wang Wenke,Zhao Yaqian

Abstract

In order to explore the effects of microstructures of membranes on superhydrophobic properties, it is critical, though, challenging, to study microstructures with different morphologies. In this work, a combination of chemical etching and oxidation was used and some copper meshes were selected for grinding. Two superhydrophobic morphologies could be successfully prepared for oil-water separation: a parabolic morphology and a truncated cone morphology. The surface morphology, chemical composition, and wettability were characterized. The results indicated that the water contact angle and the advancing and receding contact angles of the parabolic morphology were 153.6°, 154.6 ± 1.1°, and 151.5 ± 1.8°, respectively. The water contact angle and the advancing and receding contact angles of the truncated cone morphology were 121.8°, 122.7 ± 1.6°, and 119.6 ± 2.7°, respectively. The separation efficiency of the parabolic morphology for different oil-water mixtures was 97.5%, 97.2%, and 91%. The separation efficiency of the truncated cone morphology was 93.2%, 92%, and 89%. In addition, the values of the deepest heights of pressure resistance of the parabolic and truncated cone morphologies were 21.4 cm of water and 19.6 cm of water, respectively. This shows that the parabolic morphology had good separation efficiency, pressure resistance, and superhydrophobic ability compared with the truncated cone morphology. It illustrates that microstructure is one of the main factors affecting superhydrophobic properties.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3