Electronic Structures and Magnetic Properties of Co/Mn Co-Doped ZnO Nanowire: First-Principles LDA+U Studies

Author:

Xue Suqin1,Zhang Lei2,Liu Gaihui2,Wu Qiao1,Ning Jing2,Zhang Bohang2,Yang Shenbo3,Zhang Fuchun2,Zhang Weibin4

Affiliation:

1. Network Information Center, Yan’an University, Yan’an 716000, China

2. School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China

3. Hongzhiwei Technology of Shanghai, Shanghai 200120, China

4. Yunnan Key Laboratory of Opto-Electronic Information Technology, College of Physics and Electronics Information, Yunnan Normal University, Kunming 650500, China

Abstract

The first-principle calculation method based on the density functional theory (DFT) in combination with the LDA+U algorithm is employed to study the electronic structure and magnetic properties of Co/Mn co-doped ZnO nanowires. Special attention is paid to the optimal geometric replacement position, the coupling mechanism, and the magnetic origin of Co/Mn atoms. According to the simulation data, Co/Mn co-doped ZnO nanowires of all configurations exhibit ferromagnetism, and substitution of Co/Mn atoms for Zn in the (0001) inner layer brings nanowires to the ground state. In the magnetic coupling state, the obvious spin splitting is detected near the Fermi level, and strong hybridization effects are observed between the Co/Mn 3d and O 2p states. Moreover, the ferromagnetic ordering forming Co2+-O2−-Mn2+ magnetic path is established. In addition, the calculation results suggest that the magnetic moment mainly takes its origin from the Co/Mn 3d orbital electrons, and the size of the magnetic moment is related to the electronic configurations of Co/Mn atoms. Therefore, a realistic description of the electronic structure of Co/Mn co-doped ZnO nanowires, obtained via LDA+U method, shows their potential for diluted magnetic semiconductor materials.

Funder

National Natural Science Foundation of China

Scientific and Technological Innovation Team

postgraduate research opportunities program of HZWTECH

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3