Abstract
Copper oxide (CuO) ultra-thin films were obtained using magnetron sputtering technology with glancing angle deposition technique (GLAD) in a reactive mode by sputtering copper target in pure argon. The substrate tilt angle varied from 45 to 85° and 0°, and the sample rotation at a speed of 20 rpm was stabilized by the GLAD manipulator. After deposition, the films were annealed at 400 °C/4 h in air. The CuO ultra-thin film structure, morphology, and optical properties were assessed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray reflectivity (XRR), and optical spectroscopy. The thickness of the films was measured post-process using a profilometer. The obtained copper oxide structures were also investigated as gas-sensitive materials after exposure to acetone in the sub-ppm range. After deposition, gas-sensing measurements were performed at 300, 350, and 400 °C and 50% relative humidity (RH) level. We found that the sensitivity of the device is related to the thickness of CuO thin films, whereas the best results are obtained with an 8 nm thick sample.
Funder
Narodowe Centrum Nauki
AGH University of Science and Technology
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Reference66 articles.
1. Gas Sensors Market by Gas Type (Oxygen, Carbon Monoxide, Carbon Dioxide, Ammonia, Chlorine, Hydrogen Sulfide, Nitrogen Oxide, Volatile Organic Compounds, Hydrocarbons), Technology, Application, Geography—Global Forecast 2024,2019
2. Six-port microwave system for volatile organic compounds detection
3. Bi-layer nanostructures of CuPc and Pd for resistance-type and SAW-type hydrogen gas sensors
4. Gas sensing mechanisms of metal oxide semiconductors: a focus review
5. Performance of Si-Doped WO3Thin Films for Acetone Sensing Prepared by Glancing Angle DC Magnetron Sputtering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献