Abstract
Nb-Si-C thin films were deposited onto Si(001) substrates by radio frequency (RF) magnetron sputtering using individual Nb, Si, and C targets. The effects of varying the sputtering power on the phase composition of the new thin films were studied. The structure, chemical components, and morphology of the thin films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The experimental results and first-principles calculations indicate that a new MAX phase (Nb4SiC3) can be synthesized at a sputtering power of 65 W. The four-point probe test showed that the resistivity of the film containing Nb4SiC3 phase was 0.99 μΩ·m. A nano-indentation test showed that the hardness of the film containing Nb4SiC3 phase was 15 GPa, and the elastic modulus was 200 GPa.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献