Study on the Performance and Modification Mechanism of Polyphosphoric Acid (PPA)/Styrene–Butadiene–Styrene (SBS) Composite Modified Asphalt

Author:

Niu Xiangjie1,Chen Yuanzhao12ORCID,Li Zhenxia1,Guo Tengteng1,Wang Jing1,Jin Lihui1

Affiliation:

1. School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China

2. Henan Province Engineering Technology Research Center of Environment Friendly and High-Performance Pavement Materials, Zhengzhou 450045, China

Abstract

In order to address the high preparation cost of styrene–butadiene–styrene block copolymer (SBS) modified asphalt, four kinds of polyphosphoric acid (PPA) content (0%, 0.5%, 0.75%, and 1% PPA by weight of the matrix asphalt) were selected to prepare composite modified asphalt with better high-temperature performance. The physical properties of composite modified asphalt were evaluated by conventional performance tests. The rheological properties of composite modified asphalt were evaluated by dynamic shear rheometer (DSR) test and bending beam rheometer (BBR) test. The synergistic modification mechanism of PPA and SBS was revealed by the Fourier transform infrared spectroscopy test. The results show that with the increase of PPA content, the penetration of PPA/SBS composite modified asphalt is reduced by 20.92%, 25.07% and 28.94%, respectively, compared with matrix asphalt, and the softening point is increased by 5.46%, 22.69% and 34.03%, respectively. In addition, PPA can improve the thermal oxidative aging resistance of asphalt. PPA can improve the shear resistance, high-temperature performance and temperature sensitivity of asphalt. At 82 °C, compared with SBS modified asphalt, the phase angle of PPA/SBS composite modified asphalt can be decreased by 8.63%, 13.23% and 19.24%, respectively, and G*/sinδ can be increased by 41.97%, 67.62% and 70.97%, respectively. SBS mainly exists in asphalt in the form of physical blending, and PPA has a new chemical reaction with asphalt, which increases the macromolecules and chain hydrocarbon components in asphalt, and the macroscopic performance is the improvement of high-temperature performance of asphalt. However, PPA has a negative effect on the low-temperature performance of the SBS modified asphalt.

Funder

Key Scientific Research Projects of Colleges and Universities in Henan Province in 2021

Key R&D and Promotion of Special Scientific and Technological Research Projects of Henan Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3