Affiliation:
1. Key Laboratory of Key Film Materials & Application for Equipment (Hunan Province), School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
2. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Abstract
The failure mechanism of the Pt-modified aluminide (Pt-Al) bond coating (β-(Ni, Pt)Al coating) in a simulated service environment has seldom been investigated. Based on a self-developed thermal barrier coating service environment simulator, a thermal shock experiment of single-phase Pt-Al bond coating on DD419 substrate at a temperature of 1170 °C was conducted combined with a real-time monitoring infrared thermal imager. The lifespan and failure mechanism of the coating are analyzed in detail. The results reveal that specimens of the Pt-Al bond coating, subjected to three repeated tests, exhibit failure after 650, 528, and 793 thermal shock cycles at 1170 °C, respectively. After failure, the contents of Pt and Al elements in the peeled region are lower than those in the unpeeled area, and a diffusion zone emerges in the bond coating. The failure mechanism of the Pt-Al bond coating during the thermal shock test can be attributed to three main aspects: (1) the diffusion and consumption of the Pt element reduced the oxidation resistance of the Pt-Al bond coating; (2) the diffusion and depletion of elemental Al causes a phase change in the coating, leading to the failure of the coating; (3) thermal stresses are generated in the Pt-Al bonded coating during the thermal shock test, which ultimately leads to wrinkling.
Funder
National Natural Science Foundation of China
Science and Technology Innovation Program of Hunan Province
Scientific Research Foundation of Hunan Provincial Education Department
Postgraduate Scientific Research Innovation Project of Hunan Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献