Research on the Mechanism of Anti-Stone-Damage Automotive Coating Based on Computational Fluid Dynamics Method

Author:

Xiao GuoquanORCID

Abstract

Damage to the body or critical components caused by stone strikes to automotive coatings affects the safety of the car. More and more attention are being paid to the study of the anti-stone-damage mechanism of coatings. Firstly, a computational fluid dynamics (CFD) model was established based on a single-impact anti-stone tester, and the simulation results show the following: (a) At 90° incidence, the air pressure of the stone impact suddenly and rapidly increases when the semicircular surface projectile velocity is greater than 30 m/s. The air pressure of the conical projectile stone at the distance of 0.3 and 0.15 mm suddenly increases at the projectile velocity of 10 and 20 m/s, respectively. (b) When the projectile velocity exceeds 15 m/s, the pressure of the semicircular surface projectile suddenly increases. (c) When the speed is less than 20 m/s, the shedding area decreases with the increase in the speed, while the stone impact pressure increases with the increase in the speed. Then, the simulation results of the incident velocity of 40 m/s show that the working pressure is 195.48 kPa, and the impact force is 8142.56 N. Finally, the relationship between the impact force and the driving air flow pressure was obtained according to the DIN 55996-1 standard stone impact resistance test and compared with the simulation results, showing that trend of the impact force increasing with the increase in driving air flow pressure is consistent, the simulation results are about 1.40 times the experimental results, and the simulation results are large and can be considered by increasing the test correction coefficient adjustment. Based on the CFD method, research on the mechanism of anti-stone-damage automotive coating can greatly reduce the number of stone strike instrument experiments, shorten the cycle, and reduce the research and development costs.

Funder

Science and Technology Planning Project of Guangzhou

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3