Pt–Ti Alloy Coatings Deposited by DC Magnetron Sputtering: A Potential Current Collector at High Temperature

Author:

Briois PascalORCID,Arab-Pour-Yazdi Mohammad,Martin NicolasORCID,Billard Alain

Abstract

Metallic platinum–titanium coatings were deposited by co-sputtering of two metallic Pt and Ti targets in pure argon atmosphere. The titanium concentrations varied from 0 to 47 atomic percent and were adjusted as a function of the current applied to the titanium target. The structural and chemical features of these films were assessed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). All as-deposited coatings exhibit a perfect covering of the alumina pellets’ substrate surface. The coatings containing more than 4 at.% Ti are amorphous, whereas the others crystallize in the face-centered cubic (fcc) structure of platinum. After an annealing treatment under air for 2 h, all of the coatings adopt the fcc structure with a crystallization temperature depending on the titanium content. For titanium concentrations higher than 32 at.%, the TiO2 phase appears during the annealing treatment. For the smaller film thickness of Pt–Ti alloys (15 nm), the Ostwald ripening mechanism is observed by SEM increasing the annealing temperature regardless of the content of Ti. The film resistivity measured at room temperature is lower than 7 × 10−4 Ω·cm and increases with the temperature to achieve an insulating behavior (in air and reducing atmosphere Ar-H2 (90-10) at 1123 K the resistivity is ρ ≈ 10+36 Ω·cm). When the thickness of intermetallic Pt3Ti layer is higher than 50 nm, the coating is continuous and the resistivity is below 5 × 10−4 Ω·cm in air and in reducing atmosphere (Ar with 10% of H2) up to 1273 K.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3