Study on Using Microbubbles to Reduce Surface Damage of Mercury Target for Spallation Neutron Source

Author:

Sun Xu,Lin Fuzhong,Yang Yanzhen,Xue Yuan,Fu Yongjian,Hang WeiORCID,Zou Shiqing

Abstract

A liquid mercury target, which is used to explore the neutrons produced by spallation reactions, has been installed at the Materials and Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC). As the proton beams bombard the target, pressure waves are generated on the interface between liquid and solid metals due to thermal shock. The negative-pressure-induced cavitation causes severe pitting damage to the vessel surface of the mercury target. To reduce the surface damage of the mercury target and prolong its service life, we developed vibratory horn experiments in bubbly water. In this study, the effect of microbubbles on cavitation damage on the workpiece surface was investigated using ultrasonic erosion tests. Experimental results showed that surface damage was significantly reduced under the condition of injecting microbubbles. Additionally, we developed a simulation code to analyze the change in pressure waves in the water. The analysis results showed that the pressure amplitude of the pressure waves was significantly reduced under the condition of injecting microbubbles, and the fluctuation of the pressure waves became more regular when injecting microbubbles. We also found that the pressure amplitude of the pressure waves was decreased with a decrease in the diameter of the microbubbles.

Funder

Natural Science Foundation of Fujian Province

Doctor Start Funding of Longyan University

Huaqiao University Engineering Research Center of Brittle Materials Machining

Natural Science Foundation of Zhejiang Province

Young Teachers’ Education Research Project of Fujian

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3