Abstract
In the present work, abrasive and erosive wear of wear-resistant composite coatings with a complex structure and different phase compositions deposited on titanium surfaces was studied. The coatings were obtained by electrospark deposition (ESD) using two types of hard-alloy compositions: WC–TiB2–B4C–Co–Ni–Cr–Si–B and TiB2–TiAl reinforced with dispersed nanoparticles of ZrO2 and NbC. The influence of the ESD process parameters on the roughness, thickness, composition, structure and coefficient of friction of the coated surfaces was investigated, and their role in protecting the titanium surfaces from wear was clarified. Dense coatings with the presence of newly formed wear-resistant phases and crystalline-amorphous structures were obtained, with roughness, thickness and microhardness that can be varied by the ESD modes in the range Ra = 2.5 ÷ 4.5 µm, δ = 8 ÷ 30 µm and HV 8.5 ÷ 14.0 GPa. The new coatings were found to reduce the abrasive and erosive wear of the coated surfaces by up to four times. The influence of the geometric characteristics, composition and structure of coatings on the wear intensity and wear resistance of coatings was studied.
Funder
Bulgarian National Science Fund of the Ministry of Education and Science
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献