Cathode Interlayer Engineering for Efficient Organic Solar Cells under Solar Illumination and Light-Emitting Diode Lamp

Author:

Benesperi Iacopo Sîm

Abstract

Organic solar cells (OSCs) have become a potential energy source for indoor light harvesting in recent years as they have witnessed a record power conversion efficiency (PCE) of over 30% under indoor lights. Among various strategies, interlayer engineering is one of the important factors in improving the performance of OSCs. Here, we reported an efficient OSC based on PM6:Y6 photoactive layer showing an excellent PCE of ~22% and ~14% under light-emitting diode (LED, 1000-lx) and 1-sun (AM1.5 G) conditions, respectively. The performance of OSCs was optimized by systematically investigating the optical, electrochemical, and morphological characteristics of three different cathode interlayers (CILs) named as: PEIE, ZnO, and ZnO/PEIE (bilayer). The high transmittance (~90%), suitable work function (~4.1 eV), and improved surface morphology (RMS: 2.61 nm) of the bilayer CIL contributes in improving the performance of OSCs. In addition, the suppressed charge recombination and improved charge carrier transport are attributed to high shunt resistance and appropriate energy levels alignment between photoactive layer and bilayer CIL. The findings in the study might provide guidelines for designing novel interlayers in the development of efficient OSCs for different illumination conditions.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3