Analysis of Surface Roughness during Surface Polishing of ITO Thin Film Using Acoustic Emission Sensor Monitoring

Author:

Kim Hyo-Jeong12ORCID,Lee Hee-Hwan1,Lee Seoung-Hwan2

Affiliation:

1. Department of Mechanical Design Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea

2. Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, Gyeonggi, Ansan 15588, Republic of Korea

Abstract

This study investigates the intricate process of surface polishing for ITO-coated Pyrex glass utilizing magnetic abrasive polishing (MAP) while employing acoustic emission (AE) sensors for real-time defect monitoring. MAP, known for its versatility in achieving nanoscale thickness processing and uniform surfaces, has been widely used in various materials. However, the complexity of the process, influenced by multiple variables like cutting conditions, material properties, and environmental factors, poses challenges to maintaining high surface quality. To address this, a sensor monitoring system, specifically one that uses AE sensors, was integrated into the MAP process to detect and confirm defects, providing real-time insights into machining conditions and outcomes. AE sensors excel in identifying material deterioration, microcrack formation, and wear, even in cases of minor damage. Leveraging AE sensor data, this study aims to minimize surface defects in ITO thin films during MAP while optimizing surface roughness. The investigation involves theoretical validation, magnetic density simulations, and force sensor pressure measurements to identify factors influencing surface roughness. ANOVA analysis is employed to determine optimal processing conditions. Additionally, this study compares the identified optimal roughness conditions with those predicted by AE sensor parameters, aiming to establish a correlation between predicted and achieved surface quality. The integration of AE sensor monitoring within the MAP process offers a promising avenue for enhancing surface quality by effectively identifying and addressing defects in real time. This comprehensive analysis contributes to advancing the understanding of surface polishing methodologies for ITO-coated Pyrex glass, paving the way for improved precision and quality in thin-film surface processes.

Funder

Korea Evaluation Institute of Industrial Technology

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3