An Investigation for Minimizing the Wear Loss of Microwave-Assisted Synthesized g-C3N4/MoS2 Nanocomposite Coated Substrate

Author:

Saxena MukulORCID,Sharma Anuj Kumar,Srivastava Ashish KumarORCID,Singh Narendra,Dixit Amit RaiORCID

Abstract

Mechanical components frequently come into contact against one another causing friction that produces heat at the contact area and wear of the components that shortens part life and increases energy consumption. In the current study, an attempt was made to optimize the parameters for the pin-on-disc wear tester. The experiments were carried out in ambient thermal conditions with varying sliding speeds (0.5 m/s, 0.75 m/s, and 1.0 m/s) and applied loads (5 N, 10 N, and 15 N) for pure molybdenum disulfide with 9% and 20% weight percentage of graphitic carbon nitride (g-C3N4) in molybdenum-disulfide (MoS2)-nanocomposite-coated steel substrate. Analysis of variance (ANOVA) was used to determine the outcome of interaction between various constraints. To identify the minimum wearing conditions, the objective was defined as the criterion ‘smaller is better’. The maximum impact of the applied load on the coefficient of friction and wear depth was estimated to be 59.6% and 41.4%, respectively, followed by sliding speed. The optimal condition for the minimum coefficient of friction and wear was determined to be 15 N for applied load, 0.75 m/s for sliding speed, and weight percentage of 9 for g-C3N4 in MoS2 nanocomposite. At the 95% confidence level, applied load was assessed to have the most significant effect on the coefficient of friction, followed by sliding speed and material composition, whereas material composition considerably impacts wear, followed by loading and sliding speed. These parameters show the effect of mutual interactions. Results from the Taguchi method and response surface methodology are in good agreement with the experimental results.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3