Graphitic Layered Structures Enhancing TiNT Catalyst Photo-Electrochemical Behaviour

Author:

Passalacqua Rosalba12ORCID,Abate Salvatore12ORCID,De Luca Federica1,Perathoner Siglinda12,Centi Gabriele12ORCID

Affiliation:

1. Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy

2. ERIC aisbl & INSTM CASPE (Laboratory of Catalysis for Sustainable Production & Energy), University of Messina, 98166 Messina, Italy

Abstract

The increasing knowledge in nanoscience and materials technology promoted the development of advanced materials with enhanced and unusual properties suitable for sustainable applications ranging from energy to environmental purposes. Here are presented some results from our current investigations on composite semiconducting materials. The investigated composites have been prepared from different nitrogen precursors and thin films of TiO2 nanotubes. The synergy between hetero-structures based on graphitic-C3N4 and thin films of titania nanotubes obtained by anodisation was studied. The composites have been characterised with several complementary techniques to evidence the relation between photo-behaviour and the composition of the samples. This study allows new insights into the nature of the specific enhanced properties due to this synergy among the two compounds. The g-C3N4/TiNT heterojunctions showed enhanced photo-electrochemical properties observed from the photocurrent measurements. The as-prepared composites have been investigated as cathode materials in the electrocatalytic reduction of oxalic acid (OX), evidencing the capability of tuning the reaction toward glycolic acid with respect to the pristine TiNT array. The observed Faradic efficiency (FE) for the composites follows the trend: TiNT-U6 > TiNT-M6 > TiNT-MU18. TiNT-U6 shows the best performances (FEGC = 63.7%; FEGO = 15.5%; OX conversion = 61. 4%) after 2 h of reaction. The improved photo-electrochemical properties make these materials suitable for H2 production, solar-light-driven water splitting, and CO2 reduction applications.

Funder

MIUR under the PRIN2017 programme

European Union’s HORIZON2020 research and innovation program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3