Abstract
Cavitation erosion and corrosion commonly occur on the surface of fluid dynamic system components, mostly water hydraulic valves, causing the failure of metal parts. Coating of polytetrafluoroethylene (PTFE) on Al2O3 (010) was created by varying the chain length of polytetrafluoroethylene. Calculations were conducted by molecular dynamic (MD) simulations. This study shows that the K10 and K20 chain lengths’ mechanical properties possess negative elastic, shear, and bulk modulus values. We have found that the K10 chain length composition shows the high results of binding energy and negative bulk modulus of 6267.16 kJ/mol and −3709.54 GPa, respectively. The K10 chain length was observed to possess a higher cohesive energy density (CED) and solubility parameter of (6.885 ± 0.00076) × 109 J/m3 and (82.974 ± 0.005) (J/cm3)0.5, respectively. It was also found that increasing the chain length contributes to decreasing the binding energy and solubility parameter of PTFE/Al2O3 (010) composition. These results are vital for overcoming the repetitive regime of high compressive strength of water microjets on the valves’ material surface. Improved values of the cohesive energy density and solubility parameters imply the water’s superior hydrophobic effect.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献