Performance Evaluation According to Polymer Encapsulation Characteristics of Eco-Friendly Plastic Gamma-Ray Shield

Author:

Kim Seon-ChilORCID

Abstract

To eliminate the exposure of medical staff to radiopharmaceuticals during nuclear medicine tests, a new process technology was proposed for manufacturing gamma-ray shields used in nuclear medicine. In the case of manufacturing the existing gamma-ray shield, a method of increasing the content of the shielding material in the mixed material is used to improve the shielding performance. However, it is impossible to improve the shielding performance by simply increasing the content of the shielding material. Therefore, this study aims to present the optimal conditions for improving the miscibility between composite materials. Following the additional mixing of barium sulfate and bismuth oxide with tungsten, a syringe shield was developed via a plastic injection mold process. When tungsten was solely used or in combination with other shielding materials, polymer encapsulation occurred, and miscibility between composite materials was observed. Based on these results, the optimal conditions in terms of eco-friendly materials, economic feasibility, and improvement in shielding performance were determined. The findings of this study reveal that when tungsten and the polymers are combined, the polymer encapsulation is optimal, the particles are uniformly dispersed, and the shielding performance is significantly improved. With a 99mTc source, a 6.9% improvement in the shielding performance is achieved compared with the use of lead.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3