Monocrystalline Nickel Nanogrinding Subsurface Deformation-Layer Depth Study Based on Orthogonal Tests

Author:

Ren Jie12,Lv Ming3

Affiliation:

1. Department of Mechanical Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China

2. State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072, China

3. School of Mechanical and Transportation Engineering, Taiyuan University of Technology, Taiyuan 030006, China

Abstract

Nanogrinding is one of the main technologies for machining complex surface shapes with nanometer-level precision. The subsurface deformation depth, as an important index of machining quality, directly affects the service life and mechanical properties of machined parts. In order to explore the factors that influence subsurface deformation depth, this work investigated the effects of three factors, namely, grinding speed, grinding depth and crystal orientation, along different crystal planes at the depth of the subsurface deformation layer in a monocrystalline nickel nanofabrication process. By combining molecular dynamics simulation and orthogonal tests, the results showed that, among the three aforementioned factors, the influence of crystal orientation at the depth of the subsurface deformation layer was the greatest, followed by that of grinding depth, while the influence of grinding speed was the weakest. Through the orthogonal tests, the factors affecting the significance of subsurface deformation depth were analyzed, and the results were found to be more meaningful compared with those of current single-factor studies. Meanwhile, in-depth exploration of the nanogrinding mechanism can provide the necessary theoretical basis for the development of nanomachining technology, which is of great significance for the improvement of ultra-precision cutting technology.

Funder

Taiyuan Institute of Technology Scientific Research Initial Funding

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3