Abstract
The blades of modern gas turbine engines are complex structures made of heat-resistant nickel alloys with a complex system of internal cavities. The article describes a method of strengthening samples of a heat-resistant Ni-Cr alloy by applying a composite coating (Cr-Al-Co + ZrO2-Y2O3). The alloy prototypes were fabricated by vacuum melting. An ion-plasma technology of a two-layer coating with an inner metal and an outer ceramic layer on the prepared surface of the heat-resistant alloy matrix was developed. The morphology and structure of the alloy prototypes and the investigated composite coating were studied by scanning electron spectroscopy. The total thickness of the two-layer wear-resistant coating was 17–18 μm. The thickness of the inner layer (Cr/Al/Co) is 10–11 μm and the thickness of the outer ceramic coating (ZrO2-Y2O3) is 6–7 μm. To improve the operational characteristics of the material, an electron-beam surface treatment was proposed. The research results showed a sevenfold increase in surface resistance compared with the initial state.
Funder
Ministry of Education and Science of the Republic of Kazakhstan
Education, Audiovisual and Culture Executive Agency
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献