Experimental Study on Microwave Drying Aluminum Hydroxide

Author:

Zheng Xuemei1,Yuan Fuqin1,Ma Aiyuan1ORCID,Tian Shihong2

Affiliation:

1. School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui 553004, China

2. Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

Abstract

The aluminum hydroxide produced by the Bayer process contains a large amount of water which leads to the consumption of a large amount of heat for moisture removal in the calcination process, resulting in an increased energy consumption. The effects of temperature and microwave power on the dehydration ratio and the dry matter ratio of aluminum hydroxide were investigated. The characteristics of temperature variation during drying were discussed. X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle size, Fourier transform infrared (FTIR) spectroscopy, and dielectric property analyses were made to characterize the dried materials. The analysis results showed that within the range of bench-scale experimental parameters, the dehydration ratio was higher and the proportion of dry matter was lower at a higher final temperature. Within the range of pilot-scale experimental parameters, the dehydration ratio increased with the increasing microwave power from 500 W to 1500 W. XRD spectra revealed that when the final temperature exceeded 220 °C, a part of the aluminum hydroxide underwent a low-temperature phase transition to boehmite. The SEM images and a particle size analysis showed that there was no significant difference between the morphologies of the powder obtained by microwave drying and conventional drying methods. The powder obtained by both processes had an average particle size of around 80 μm. The dielectric constant and the dielectric loss of the dried material decreased greatly.

Funder

the Scientific Research and Cultivation Project of Liupanshui Normal University

the Science and technology development project of Liupanshui City

discipline team of Liupanshui Normal University

key cultivation disciplines of Liupanshui Normal University

Guizhou Provincial First-class Professional

Carbon Neutral Engineering Research Center of Guizhou colleges and universities in Coal Industry

College Students’ Innovation and Entrepreneurship training program of Guizhou Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3