Cracking Behavior of Atmospheric Plasma-Sprayed 8YSZ Thermal Barrier Coatings during Thermal Shock Test

Author:

Huang Jibo,Sun Wen,Huang Renzhong,Ma Wenhua

Abstract

The failure of plasma-sprayed thermal barrier coatings (TBCs) during service is usually related to the cracking behavior. In this study, plasma-sprayed TBCs were prepared with two kinds of agglomerated sintered yttria-stabilized zirconia (YSZ) powders with different particle sizes. The evolution of mechanical properties and crack propagation behavior of the coatings during the whole life stage were studied by a thermal shock test. The effect of powder particle size on the cracking behavior of the TBCs during thermal shock was analyzed from the aspect of pore structure, mechanical properties, and stress state of the coatings. The crack propagation and coalescence in the direction parallel to the substrate in the coating is the main factor leading to the spalling failure of the coating during thermal shock. Although the coating prepared by fine YSZ has higher fracture toughness, the lower strain tolerance will increase the cracking driving force on the crack tip of the coating during thermal shock, and the cracks in the coating propagate merge at a faster rate during thermal shock. The larger porosity and pore size of the coating prepared by coarse YSZ help the coating suffer less thermal stress during thermal shock. Although the existence of pores reduces the fracture toughness of the coating to a certain extent, the increase of strain tolerance reduces the crack growth rate in the coating, so the coating has a longer life.

Funder

Fundamental Research Funds for the Central Universities, South China University of Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3