Electrodeposited Ni/TiN-SiC Nanocomposites on the Dumbbell: Reducing Sport Injuries

Author:

Bai HaijunORCID,Li Qiang

Abstract

Sports are becoming an important part of everyday life. In this study, an excellent Ni-SiC nanocomposite was prepared on the dumbbell surface using the pulse electrodeposition (PE) method to improve the durability of sports equipment and prevent sports injuries. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), abrasion testing, triboindentry, and X-ray diffraction (XRD) were used to evaluate the impact of plating conditions upon the microhardness, microstructure, morphology, and wear behavior of the fabricated coatings. The obtained results showed that several SiC and TiN nanoparticles were incorporated into Ni/TiN-SiC nanocomposites obtained at 4 A/dm2. SiC and TiN nanoparticles had mean diameters of 37.5 and 45.6 nm, respectively. The Ni/TiN-SiC nanocomposite produced at 4 A/dm2 showed an excellent mean microhardness value of 848.5 HV, compared to the nanocomposites produced at 2 and 6 A/dm2. The rate of wear for Ni/TiN-SiC nanocomposite produced at 4 A/dm2 was 13.8 mg/min, demonstrating outstanding wearing resistance. Hence, it has been suggested that the Ni/TiN-SiC nanocomposite can effectively reduce sports injuries.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3