Research on the Interaction Capability and Microscopic Interfacial Mechanism between Asphalt-Binder and Steel Slag Aggregate-Filler

Author:

Chen XiaobingORCID,Wen WeiORCID,Zhou Jianguang,Zhou Xiaolong,Ning YunfengORCID,Liang Zhongshan,Ma Zhenyu

Abstract

To explore the applicability of steel slag porous asphalt mixture, the interaction capability and microscopic interfacial mechanism between asphalt-binder and steel slag aggregate-filler were investigated in this laboratory study. These objectives were accomplished by comparing and analyzing the differences between steel slag and basalt aggregates in interacting with the asphalt-binder. The study methodology involved preparing basalt and steel slag asphalt mortar to evaluate the penetration, ductility, softening point, toughness, and tenacity. Thereafter, the interaction capability between the asphalt-binder and aggregates was characterized using the interaction parameters of the asphalt mortar obtained from dynamic shear rheometer (DSR) testing. For studying the functional groups and chemical bonding of the asphalt mortar, the Fourier Transform infrared (FTIR) spectrometer was used, whilst the interfacial bonding between the asphalt-binder and aggregates was analyzed using the scanning electron microscope (SEM). The corresponding test results indicated that the physical and rheological properties of the two asphalt mortars were similar. However, whilst the FTIR analysis indicated domination through chemical reactions, the interaction capability and interfacial bonding between the asphalt-binder and steel slag aggregates exhibited superiority over that between the asphalt-binder and basalt aggregates, with pronounced adsorption peaks appearing in the steel slag asphalt mortar spectrum. On the other hand, the SEM test revealed that, compared with the basalt, the micro-interfacial phases between the steel slag and asphalt-binder were more continuous and uniform, which could potentially enhance the interfacial bond strength between the asphalt-binder and aggregates (filler).

Funder

National Key Research and Development Program

National Science Foundation of China

Suzhou Jiaotou Construction Management Co., Ltd.

Suzhou Sanchuang Pavement Engineering Co., Ltd.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3