Affiliation:
1. School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China
2. School of Highway, Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China
3. CCCC First Highway Consultants Co., Ltd., Xi’an 710000, China
4. Shaanxi Road and Bridge Group Co., Ltd., Xi’an 710075, China
Abstract
Cement concrete pavement accounts for a large proportion of the road network due to its excellent mechanical strength and durability. However, numerous microcracks are generated due to the high brittleness of concrete, which poses a threat to the service life of concrete pavement. Currently, simultaneous addition of fibers and polymers is a feasible approach to resolving the issues associated with the brittleness of concrete. This study explores the properties of concrete mixtures containing different levels of polypropylene fibers and water-borne epoxy. Additionally, fly ash is also introduced to concrete mixtures. The tests performed include slump, compressive strength, flexural strength, shrinkage, depth of water penetration, and abrasion. The results indicate that water-borne epoxy, at all levels, contributed to improving the weak interfacial bonding between polypropylene fibers and concrete. In addition, the combined incorporation of polypropylene fibers and water-borne epoxy could improve the mechanical and durability properties of concrete, with the combined utilization of 0.1% polypropylene fibers and 10% water-borne epoxy exhibiting the best performance. Moreover, with the incorporation of 10% fly ash into concrete, the mechanical strength and abrasion resistance experienced a slight reduction, while the workability, drying shrinkage resistance, and impermeability were improved. The current findings indicate that the combined utilization of polypropylene fibers and water-borne epoxy at appropriate levels is beneficial for application in pavement; however, in spite of superior drying shrinkage resistance and impermeability, the incorporation of fly ash into concrete pavement should be properly treated according to the actual engineering conditions.
Funder
Shandong Jianzhu University Doctoral Fund
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献