Investigation on Corrosion Resistance and Formation Mechanism of a P–F–Zr Contained Micro-Arc Oxidation Coating on AZ31B Magnesium Alloy Using an Orthogonal Method

Author:

Zhu Yuanyuan,Chang Wenhui,Zhang Shufang,Song Yingwei,Huang Huade,Zhao Rongfang,Li Guoqiang,Zhang RongfaORCID,Zhang Yijia

Abstract

In this study, the synergistic effects of NH4HF2, sodium phytate (Na12Phy), K2ZrF6, and treatment time on corrosion resistance of a micro-arc oxidation (MAO) treated magnesium alloy and the entrance mechanism of P, F, and Zr into anodic coatings were investigated using an orthogonal method. In addition, the roles of NH4HF2, Na12Phy, and K2ZrF6 on coating development were separately studied. The results show that NH4HF2 and Na12Phy, the corrosion inhibitors of magnesium alloys, are beneficial but K2ZrF6 is harmful to developing anodic coatings. The corrosion resistance of MAO coatings is synergistically determined by coating characteristics, though the coating thickness plays a main role. Na12Phy significantly improves but NH4HF2 decreases the corrosion resistance of MAO coatings, while excess high K2ZrF6 is harmful to the coating corrosion resistance. Treatment time can increase the coating thickness but is the least important factor in corrosion resistance. During MAO, NH4HF2, Na12Phy, and K2ZrF6 take part in coating formation, causing P, F, and Zr to compete with each other to enter into anodic coatings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3