Enhanced Removal of Non-Steroidal Inflammatory Drugs from Water by Quaternary Chitosan-Based Magnetic Nanosorbents

Author:

Soares Sofia F.ORCID,Trindade TitoORCID,Daniel-da-Silva Ana L.ORCID

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common pharmaceuticals used worldwide. They are widely detected in natural waters due to their persistence in wastewater treatment, and their removal is desirable in wastewater management. As a contribution to tackle this challenge, this study explores magnetic quaternary chitosan-based nanosorbents for the effective magnetically assisted removal of three NSAIDs (diclofenac, naproxen, and ketoprofen) from water. Toward this goal, silane groups were grafted onto the backbone of trimethyl chitosan through the reaction with an epoxide functionalized silane. Once silanized, the modified chitosan was employed to coat Fe3O4 nanoparticles. The prepared materials were characterized using FTIR spectroscopy and solid-state 29Si and 13C NMR spectroscopy, which confirmed the encapsulation of Fe3O4 nanoparticles with a hybrid siliceous material enriched in trimethyl chitosan. The effect of the initial NSAIDs concentration, pH, and contact time in the adsorption behavior was investigated. The kinetic data were well described by the pseudo-second-order kinetic model, indicating a chemisorption mechanism. The maximum adsorption capacities estimated from the Langmuir model were 188.5 mg/g (0.5925 mmol/g), 438.1 mg/g (1.7371 mmol/g), and 221.5 mg/g (0.8710 mmol/g) for diclofenac, naproxen, and ketoprofen, respectively. These adsorption capacities are higher than those of most reported sorbents, indicating the potential of these biosorbents to remove the selected NSAIDs using low-energy magnetically assisted separation.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3