High Sensitivity to Salinity-Temperature Using One-Dimensional Deformed Photonic Crystal

Author:

Ali Naim BenORCID,Alsaif HaithamORCID,Trabelsi Youssef,Chughtai Muhammad TajammalORCID,Dhasarathan Vigneswaran,Kanzari Mounir

Abstract

This paper aims to theoretically study the concept of a photonic salinity and temperature sensor according to a deformed one-dimensional photonic structure. The fundamental capability of the proposed sensor is studied. Simultaneously we search to optimize the thickness of the structure and to get the maximum salinity and temperature sensitivity. The structure is constructed by alternating layers of TiO2 and fused-silica P times. In the middle of the structure, a cavity containing seawater is inserted to measure its salinity and temperature. The transfer matrix method (TMM) is used to simulate the wave-transmittance spectra. It is shown that the quality factor (Q-factor) of the resonance peaks depends on the number (P) of layers. After that, the thickness of the layers is deformed by changing the deformation degree (h). The parameters P and h are optimized to get the maximal Q-factor with the minimal number of layers and structure thickness. The best sensitivity SS of the proposed salinity sensor is 558.82 nm/RFIU with a detection limit of 0.0034 RFIU. In addition, the best sensitivity ST of the designed temperature sensor is 600 nm/RFIU with a detection limit of 0.0005 RFIU.

Funder

University of Hail

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3