Abstract
The use of porous titanium samples fabricated by space-holder powder metallurgy with bioactive coatings has already been reported to prevent resorption of the bone surrounding the implant and improve osseointegration, respectively. However, the presence of pores as well as the poor adherence and the brittle behavior inherent to glassy coatings affect the service behavior of implants fabricated from these samples. Therefore, they need to be optimized. In this work, 50 vol.% of porosity titanium substrates were manufactured with different pore range size (100–200 and 355–500 µm) spacer particles and coated with a bilayer of bioactive glasses (45S5/1393). The effect of the pores on the tribomechanical properties and infiltration of the bioactive glass 1393 along with the bioactivity of the bioactive glass 45S5 were evaluated by instrumented micro-indentation and scratch tests and the formation of hydroxyapatite in simulated body fluid. The results obtained were very promising as potential implants for the replacement of small tumors in cortical bone tissues, mainly due to the smaller pores that present an improved biomechanical and biofunctional balance.
Funder
Ministry of Science and Innovation of Spain
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献