Abstract
The problem of creating and implementing high-temperature coatings for the protection of carbon–carbon (C/C) composites remains relevant due to the extremely low or insufficient heat resistance of C/C composites in an oxygen-containing environment. In the present work, detonation spraying was used for preparing new ZrB2–35MoSi2–10Al coatings on the surface of C/C composites without a sublayer. As a stabilizer of high-temperature modification of zirconia, and to increase the wettability of the surface of C/C composites, 5 wt.% Y2O3 and 10 wt.% Al were added to the initial powder mixture, respectively. The structure of the as-sprayed coating presents many lamellae piled up one upon another, and is composed of hexagonal ZrB2 (h- ZrB2), tetragonal MoSi2 (t-MoSi2), monoclinic ZrO2 (m-ZrO2), tetragonal ZrO2 (t-ZrO2), monoclinic SiO2 (m-SiO2), and cubic Al phases. The oxidation behavior and microstructural evolution of the ZrB2–35MoSi2–10Al composite coating were characterized from RT to 1400 °C in open air. During oxidation at 1400 °C, a continuous layer of silicate glass was formed on the coating surface. This layer contained cubic ZrO2 (c-ZrO2), m-ZrO2, and small amounts of mullite and zircon. The results indicated that a new ZrB2–35MoSi2–10Al composite coating could be used on the surface of C/C composites as a protective layer from oxidation at elevated temperatures.
Funder
Ministry of Science and Higher Education of the Russian Federation
Russian Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献