Analysis of Machinability and Crack Occurrence of Steels 1.2363 and 1.2343ESR Machined by Die-Sinking EDM

Author:

Mouralova KaterinaORCID,Benes Libor,Bednar Josef,Zahradnicek Radim,Prokes Tomas,Fries Jiří

Abstract

Die-sinking electric discharge machining (EDM) is an indispensable technological operation, especially in the production of molds and all internal and external shapes and cavities. For this reason, the effect of machine parameter settings (open-voltage, pulse current, pulse on time, and pulse off time) on the machining of two types of steels, 1.2363 and 1.2343ESR, was carefully investigated using graphite or copper electrodes in 10 mm × 10 mm or 100 mm × 100 mm shapes. For this purpose, a two-level half factor experiment was performed with one replication at the corner points and two replications at the central points, with a total of 80 rounds. The subject of the evaluation was the topography and morphology of machined surfaces including a detailed analysis of surface and subsurface defects in the form of cracks including the creation of regression equations describing the probability of crack occurrence. Furthermore, a study of the local hardness change in the subsurface area was performed, and lamellas were also made and studied by transmission electron microscopy. It has been found that by using die-sinking EDM, it is possible to effectively predict the probability of cracking on machined surfaces and also on machine 1.2363 and 1.2343ESR steels with a very good surface quality of Ra 1.9 and 2.1 µm using graphite electrodes. These findings will ensure the production of parts with the required surface quality without cracks, which is a crucial aspect for maintaining the required functionality and service life of the parts.

Funder

Technology Agency of the Czech Republic

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructural damage during electrical discharge machining of a high silicon aluminum alloy for space applications;The International Journal of Advanced Manufacturing Technology;2023-08-05

2. Machining of 1.2363 and 1.2343ESR steels using EDM;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2023-06-29

3. Green and sustainable electric discharge machining: a review;Advances in Materials and Processing Technologies;2022-09-01

4. Metal matrix nanocomposites: future scope in the fabrication and machining techniques;The International Journal of Advanced Manufacturing Technology;2022-08-25

5. A New Wire Electrode for Improving the Machining Characteristics of High-Volume Fraction SiCp/Al Composite in WEDM;Materials;2022-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3