Comparison of Fe30Co20Cr20Ni20Mo3.5 High Entropy Alloy Coatings Prepared Using Plasma Cladding, High-Speed Laser Cladding, and Deep Laser Cladding

Author:

Li Mengzhao1,Li Chao2,Li Bingyuan3,Zhou Yicheng1,Huang Long1,Cai Ang1,Cui Chang1,Gao Senao1,Zhang Guodong1ORCID,Yang Bing1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Mechanical and Electrical Engineering, Nanyang Normal University, Nanyang 473061, China

3. Hubei Port Yakou Navigation Junction Limited Company, Xiangyang 441100, China

Abstract

Three kinds of Fe30Ni20Co20Cr20Mo3.5 high entropy alloy (HEA) coatings were prepared on the surface of a Q235 steel plate using plasma cladding and laser cladding. The microstructure, crystal structure, element distribution, microhardness, wear resistance, and corrosion resistance of the coatings were studied. The grain size of the high-speed laser cladding coating (HLC) was the smallest. The crystal structures of the plasma cladding coating (PC) and HLC were single face-centered cubic (FCC), while that of the deep laser cladding coating (DLC) was body-centered cubic (BCC). DLC had the best microhardness and wear resistance. The microhardness of PC, HLC, and DLC increased by 70%, 108%, and 109%, respectively, and the average friction coefficient decreased by 33%, 44%, and 51%, respectively, compared to Q235. HLC had the best corrosion resistance, with an annual corrosion rate of 0.66925 mm/a. The annual corrosion rate of PC and HLC was only 40% of Q235. The polarization curves of PC and HLC had obvious passivation regions with a width of up to 2 V. The corrosion types of PC were pitting corrosion and intergranular corrosion, that of HLC was general corrosion, and that of DLC was severe pitting corrosion.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3