Effect of Microstructure on Electroless Ni Plating Behavior on Super Duplex Stainless Steel SAF2507 in Li-Ion Batteries

Author:

Shin Byung-Hyun1ORCID,Kim Dohyung2ORCID,Kim Doo-In1,Lee Wookjin3ORCID,Kwon Se-Hun3ORCID

Affiliation:

1. Innovative Graduate Education Program for Global High-Tech Materials and Parts, Pusan National University, Busan 46241, Republic of Korea

2. The Institute of Materials Technology, Pusan National University, Busan 46241, Republic of Korea

3. School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

The demand for Li-ion batteries has significantly increased in recent years, driven by the growing need for electric vehicles and electronic devices like smartphones. Among various materials, super duplex stainless steel (SDSS) is considered a suitable material for Li-ion batteries due to its excellent strength and corrosion resistance. However, SDSS is sensitive to heat-treatment conditions, necessitating research on heat treatment and Ni plating for battery case usage. While extensive research has been conducted on SDSS and its heat-treatment conditions, there is a research gap concerning the Ni plating of SDSS. This study addresses this gap by performing Ni plating on heat-treated SDSS. Ni plating can be executed via two methods: electroless and electro-Ni plating. To achieve a uniform plating layer, Ni plating was conducted after heat treatment at temperatures ranging from 1000 °C to 1300 °C, followed by an analysis of the behavior of electroless Ni plating. The heat-treated SDSS displayed three primary characteristics: secondary phase precipitation, solution annealing, and ferritization (ferrite fractions of 61% and 73%). The presence of secondary phases led to a slower Ni plating rate due to its lower reactivity with Ni. Post-solution annealing, the texture of SDSS exhibited the thickest Ni plating layer at the same plating time. As the volume fraction of ferrite increased from 50% to 73% on electrochemical impedance spectroscopy, the resistance of the Ni plating layer decreased from 45 kOhms to 13 kOhms. The lowest resistance was observed when the ferrite fraction reached 73%, attributed to the lower reactivity of ferrite compared to austenite. Both secondary phases and ferrite contributed to reducing the thickness of the electroless Ni plating layer. Therefore, optimizing the volume fraction of SDSS using solution annealing proves beneficial for optimizing Ni plating and enhancing corrosion resistance.

Funder

Pusan National University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3