Effect of Cooling Method on Microstructure and Microhardness of CuCrFeMnNi High-Entropy Alloy

Author:

Zhou Yajun1,Zhao Ruifeng2,Geng Hechuan1,Ren Bo13ORCID,Liu Zhongxia1ORCID,Liu Jianxiu1,Jiang Aiyun1,Zhang Baofeng1

Affiliation:

1. Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou 450061, China

2. School of Science, Henan University of Engineering, Zhengzhou 450001, China

3. School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 450001, China

Abstract

This study investigated four cooling methods for CuCrFeMnNi high-entropy alloy, namely, furnace cooling, air cooling, oil cooling, and water cooling (designated as FC, AC, OC, and WC, respectively), following a 12 h treatment at 800 °C. Results indicate that all four cooled alloys consisted of two FCC solid-solution phases (FCC1 and FCC2) and ρ phases. However, the FC alloy primarily contained FCC2 as the main phase and FCC1 as the secondary phase. The other three cooling methods yielded alloys with FCC2 as the primary phase and FCC1 as the secondary phase. With an increase in cooling rate, the content of the FCC1 phase gradually increased, that of the ρ phase initially decreased and then increased, and that of the FCC2 phase gradually decreased. The microstructure of the CuCrFeMnNi high-entropy alloy under the four cooling methods consisted of gray-black dendrites rich in Cr-Fe and white dendrites rich in Cu. Black ρ-phase particles predominated the dendrite region. As the cooling rate increased, the white interdendritic regions shrank, and the gray-black interdendritic regions expanded. The FC alloy exhibited the lowest microhardness at approximately 202.6 HV. As the cooling rate increased, the microhardness of the alloy progressively increased. The microhardness of the WC alloy was the highest, at approximately 355 HV. The strengthening mechanisms for all the alloys were primarily solid-solution strengthening and second-phase precipitation strengthening.

Funder

Key Scientific Research Project Plan of Colleges and Universities in Henan Province

Henan Province Science and Technology Research Plan Project

2023 College Student Innovation and Entrepreneurship Training Program

Young Backbone Teacher Training Program of Henan Province Colleges and Universities

Zhengzhou Basic Research and Applied Basic Research Special Fund Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3