Effect of Salt Bath Nitriding and Reoxidation Composite Texture on Frictional Properties of Valve Steel 4Cr10Si2Mo

Author:

Dai Yifan1,Tan Zefei1,Chen Wengang1,Li Dongyang2,Zhang Jubang1,Wang Zexiao1,Mao Yukun1,Wang Yuhao1,Guo Wenxuan1

Affiliation:

1. College of Mechanical and Transportation, Southwest Forestry University, Kunming 650224, China

2. Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada

Abstract

In order to improve the service life of 4Cr10Si2Mo valve steel, laser processing technology was used to prepare triangular textures with different area occupancies on the surface of 4Cr10Si2Mo, and then 4Cr10Si2Mo was subjected to salt bath nitridation (salt bath temperature 580 °C) and oxidation (oxidation temperature 400 °C). The mechanism of composite surface treatment technology on friction and wear performance of valve steel was explored. The effect of triangular texture on working surface stress and hydrodynamic pressure was explored using simulation technology, and the mechanism of texture in friction was further studied. The XRD test results showed that after salt bath nitriding and reoxidation treatment, the surface of 4Cr10Si2Mo mainly contained Fe2N oxide film and Fe3O4 and other components. The XPS test showed that the nitriding layer contained Cr-N, and the surface hardness reached 710.5 HV0.5. The simulation results showed that introducing surface texture will increase the stress on the contact surface, especially near the texture. However, under lubricating conditions, the flow field in the textured lumen produces a wedge effect, which increases the oil film pressure. After salt bath nitriding composite texture treatment, the wear resistance of 4Cr10Si2Mo significantly improved under the synergistic effect of the nitrided layer dominated by the magnetite phase (Fe3O4) and the microtexture. Fe3O4 can reduce the friction coefficient and resist oxidation reactions. In addition, the texture of the area occupancy of the texture also affects the surface tribological properties. The texture with an area occupancy rate of 11.45% (low × high is 0.3 mm × 0.3 mm) had the best anti-friction effect, and the friction coefficient reduced by 65%.

Funder

National Natural Science Foundation of China

High-end Foreign Experts Introduction Project

Joint Special Project for Agriculture in Yunnan Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3