Enhanced the Efficiency of Photocatalytic Degradation of Methylene Blue by Construction of Z-Scheme g-C3N4/BiVO4 Heterojunction

Author:

Zhang Xiong,Li Minjin,Liu Cheng,Zhang Zhiyong,Zhang Fuchun,Liu Qiaoping

Abstract

Both non-metallic g-C3N4 and BiVO4 are novel photocatalysts responsive to visible light, but their low charge separation efficiency restricts their inconspicuous photocatalytic activity. In this paper, direct Z-type g-C3N4/BiVO4 photocatalyst was constructed by calcination and hydrothermal for the degradation of methylene blue. The existence of g-C3N4/BiVO4 heterojunction was confirmed by the detailed study of its chemical structure and morphology by various characterization methods, such as X-ray diffraction (XRD), Scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The evaluation of photocatalytic performance showed that the MB degradation performance of 1.0-CN/BVO was significantly enhanced, which was 4.528 times and 2.387 times higher than pristine BiVO4 and g-C3N4, respectively, which was mainly due to the enhanced light capture ability and effective electron transfer in the photocatalytic reaction. The 1.0-CN/BVO composite exhibited extremely catalytic stability and recyclability.

Funder

General Special Scientific Research Plan of Education Department of Shaanxi Provincial Government

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3