Numerical Wear Analysis of a PLA-Made Spur Gear Pair as a Function of Friction Coefficient and Temperature

Author:

Fekete GusztávORCID

Abstract

Polylactic acid (PLA)-made machine elements exhibit easy machining, biodegradability, and excellent mechanical properties. However, enhancing their wear resistance is still a crucial engineering point, which may be achieved by altering (lowering) their coefficient of friction (CoF). Therefore, the first aim of this paper is to analyze how wear is affected by the alteration of CoF. The second aim is connected to the fact that PLA is sensitive to heat, which also limits its applicability. Accordingly, the next goal is to explore the effect of temperature on wear propagation. This study answers these questions by means of multibody dynamics simulations of a PLA-made spur gear pair. Simulations were carried out under constant torque, while the CoF and the temperature were varied in a normal operation domain (CoF: 0.1–0.05, T = 20–30 °C). The results showed that the wear volume gradually began to decline at approximately 0.085 CoF, whilst convergence to steady-state wear could be observed at 0.05 CoF. In conclusion, alteration of the CoF can lower wear by 35%, in this specific domain, while even a 5 °C rise in temperature causes 40% wear progression. The feasibility of the numerical procedure was validated by comparing numerically and experimentally obtained wear–torque results.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3