Macroscopic and Microstructural Features of Metal Thin-Wall Fabricated by Laser Material Deposition: A Review

Author:

Wang Xinlin,Jiang Jinkun,Xia Chengui,Yu Yang

Abstract

Owing to the versatility without expanding the machine’s size, thin-wall has been widely used in high-value parts. The investigation of laser additive manufacturing (LAM), which has advantages such as high powder density, easy controllability, and excellent stability, on the fabrication of thin-wall has drawn much attention. In this paper, the research status of macroscopic and microstructural features of metal thin-wall fabricated by LAM has been reviewed. The deposition quality was mainly focused on the effect of process parameters and especially the matching of z-increment and single deposition height. Based on the grain size and growth of columnar, the characteristics of microstructures were analyzed. Considering the structural feature of thin-wall, the effect of grain size and phases on the hardness and distribution of hardness were discussed. The effect of grain size, phases and loading direction on the tensile properties were reviewed. The distribution and modification of thermal stress were presented.

Funder

Natural Science Foundation of Liaoning Province

Liaoning Department of Education Scientific Research Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3