Abstract
Ceramic coatings have a long history in the orthopaedic field, with plasma sprayed coatings of hydroxyapatite as leading standard in the manufacturing process; however, these coatings can contain secondary phases resulting from the decomposition of hydroxyapatite at high temperatures, which limit the lifetime of implants and their osseointegration. This work aims to produce coatings that can maximize bone osseointegration of metallic implants. In order to preserve the raw characteristics of hydroxyapatite powders that are thermally unstable, coatings were deposited by cold spray onto Ti6Al4V alloy substrates. In contrast with other thermal spray technologies, this process presents the advantage of spraying particles through a supersonic gas jet at a low temperature. On top of hydroxyapatite, carbonated nanocrystalline apatite was synthesized and sprayed. This biomimetic apatite is similar to bone minerals due to the presence of carbonates and its poor crystallinity. FTIR and XRD analyses proved that the biomimetic characteristics and the non-stoichiometric of the apatite were preserved in the cold spray coatings. The cold spray process did not affect the chemistry of the raw material. The adhesion of the coatings as well as their thicknesses were evaluated, showing values comparable to conventional process. Cold spraying appears as a promising method to preserve the characteristics of calcium phosphate ceramics and to produce coatings that offer potentially improved osseointegration.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献