Improvement of Mechanical Properties of 20CrMnTi Steel through Microstructure Modification

Author:

Men Zhongwen,Li Shibo,Lu Xiaogang,Chen Yunbo

Abstract

Microstructure modification is an effective approach to improve the mechanical properties of materials. In the present study, expanded graphite (EG) was added in a 20CrMnTi matrix to form pearlite microstructure and proeutectoid cementite after sintering. Mechanical alloying was used to obtain a fine milled mixture with a ball/powder weight ratio of 20:1. After mechanical alloying for 10 h, the milled mixtures with different EG contents were pressurelessly sintered at 1250 °C for 10 min and then hot-pressed at 1150 °C under 30 MPa for 30 min in Ar to obtain dense and modified 20CrMnTi materials. The content of EG has a profound influence on the microstructure and mechanical properties of 20CrMnTi. A high tensile strength of 1088 MPa and a high Vickers hardness of 4.7 GPa were achieved in the 1% EG-modified 20CrMnTi, which were increased by 105% and 28%, respectively, compared with the pure dense 20CrMnTi. The formed fine pearlite and small proeutectoid cementite in the modified microstructure contributed to the improved mechanical properties of 20CrMnTi.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3