Study on Friction and Wear Properties of Zr–Cu–Ni–Al Crystalline Powder Cladding and Amorphous Composite Powder Cladding by Laser

Author:

Chen Yugan,Tao Pingjun,Zhang Weijian,Zhang Chaohan,Zhu Kunsen

Abstract

In order to improve the friction and wear performance and surface hardness of AISI 1045 steel and expand its application range, this paper carried out the research on friction and wear performance and surface hardness of Zr65Al7.5Ni10Cu17.5 crystalline powder (CP) and amorphous powder (AP) after laser cladding on AISI 1045 steel surface. The results show that both CP and amorphous powder (AP) formed a cladding layer on the surface of AISI 1045 steel under laser irradiation. The thickness of the cladding layer is about 400 μm, and the thickness of the AP cladding layer is slightly larger than that of the CP cladding layer. The results show that there are many holes in the AP cladding layer, and holes can be observed at the junction with the matrix; while the CP cladding layer is well combined with the matrix and no holes are observed. The friction performance of CP cladding layer is better than that of AP cladding layer. In the wear marks of the AP cladding layer, there are bonding areas, while the wear marks of the CP cladding layer have a furrow-like morphology, and part of the matrix is exposed. The surface microhardness and average microhardness of AP cladding layer are 49% and 94% higher than that of CP cladding layer, respectively. Hardness modification has obvious advantages. The reasons for porosity, large friction coefficient and low stability of the friction experiment of the AP cladding layer are analyzed and discussed. The ideas and methods for improving the laser irradiation to achieve both high wear resistance and high strength of the AP cladding layer are proposed.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3