Affiliation:
1. College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Student Affairs Department, University of Science and Technology Beijing, Beijing 100083, China
3. Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract
Corrosion has always been an important factor affecting the life of steel, which causes huge economic losses every year. How to improve the corrosion resistance of steel has always been a research focus. Adding rare earth elements into steel is an important method to improve the corrosion resistance of steel. In this paper, the effects of rare earth elements on steel are summarized, including the purification of molten steel, modification and modification of inclusions, improvement of grain boundaries by solid solution strengthening, the influence of phase transformation and the refinement of microstructure, and reduction in C and N desolubilization. On this basis, the progress of research on the corrosion resistance mechanisms of rare earth steel is summarized, focusing on rare earth-modified inclusions. This includes the changes in composition and sizes of inclusions by rare earth addition, promoting the transformation of MnS and Al2O3 in rare earth inclusions with regular shapes, smaller sizes and better performance, or composite rare earth inclusions. The corrosion pits that form in the early stages of corrosion are shallow in depth, fewer in number and light in corrosion degree. The effects of rare earth materials on the rust layer include: rare earth promotes the formation of a more stable corrosion product α-FeOOH, and rare earth promotes the formation of a dense rust layer, which covers the surface of the matrix and hinders the transmission of corrosion ions. The protective effect of the rare earth atomic layer on the substrate and the corrosion inhibition effect of rare earth ions are formed by the segregation of rare earth at the interface. In the end, the existing problems in the research into rare earth steel and future research directions are briefly put forward, including improving the addition process of rare earth steel, theoretical guidance on enhancing the corrosion resistance mechanism of rare earth steel, and extending the research from La, Ce, and Y steel to more rare earth steels.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献