Synthesis, Characterization and Wettability of Cu-Sn Alloy on the Si-Implanted 6H-SiC

Author:

Zhang Xiang Zhao,Xu Pu Hao,Liu Gui Wu,Ahmad AwaisORCID,Chen Xiao Hui,Zhu Ya Long,Alothman AsmaORCID,Hussain ShahidORCID,Qiao Guan Jun

Abstract

The wettability of the metal/SiC system is not always excellent, resulting in the limitation of the widespread use of SiC ceramic. In this paper, three implantation doses of Si ions (5 × 1015, 1 × 1016, 5 × 1016 ions/cm2) were implanted into the 6H-SiC substrate. The wetting of Cu-(2.5, 5, 7.5, 10) Sn alloys on the pristine and Si-SiC were studied by the sessile drop technique, and the interfacial chemical reaction of Cu-Sn/SiC wetting couples was investigated and discussed. The Si ion can markedly enhance the wetting of Cu-Sn on 6H-SiC substrate, and those of the corresponding contact angles (θ) are raised partly, with the Si ion dose increasing due to the weakening interfacial chemical reactions among four Cu-Sn alloys and 6H-SiC ceramics. Moreover, the θ of Cu-Sn on (Si-)SiC substrate is first decreased and then increased from ~62° to ~39°, and ~70° and ~140°, with the Sn concentration increasing from 2.5%, 5% and 7.5% to 10%, which is linked to the reactivity of Cu-Sn alloys and SiC ceramic and the variation of liquid-vapor surface energy. Particularly, only a continuous graphite layer is formed at the interface of the Cu-10Sn/Si-SiC system, resulting in a higher contact angle (>40°).

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis and effect of epoxy in lamination for Kevlar / E-glass hybrid composites;E3S Web of Conferences;2024

2. Role of metal–organic frameworks in catalysis;Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis;2023

3. Applications of MOF-derived single-atom catalysts;Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis;2023

4. Single-atom catalysts;Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis;2023

5. Role of MOFs as single-atom catalysts;Nanomaterial-Based Metal Organic Frameworks for Single Atom Catalysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3