Phytic Acid Doped Polyaniline as a Binding Coating Promoting Growth of Prussian Blue on Cotton Fibers for Adsorption of Copper Ions

Author:

Wang Xueyao,Li Qiang,Yang Dongmei,An Xianhui,Qian Xueren

Abstract

In recent years, the elimination of heavy metals from wastewater has become an important topic due to rapid industrialization, and it is of considerable interest to develop renewable and degradable materials for this purpose. In this work, a novel Prussian blue/polyaniline@cotton fibers (PB/PANI@CFs) composite was fabricated by a two-step process. Phytic acid doped PANI as a binding coating greatly promoted both the growth of PB and the adsorption of Cu2+. The deposition ratio of PB was as high as 24.68%. Scanning electron microscopy (SEM) displayed that PB nanoparticles were grown more uniformly in the composite and formed a perfect nanocube structure compared with PB@CFs. The successful deposition of both PB and PANI on CFs was demonstrated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), and X-ray photoelectron spectroscopy (XPS). The effect of adsorption time, adsorbent dose, initial pH value, and initial copper sulphate concentration on the adsorption of PB/PANI@CFs composite for Cu2+ was studied by static adsorption and was compared with those of PANI@CFs and PB@CFs. The results showed that the maximum removal efficiency of Cu2+ by PB/PANI@CFs can reach 93.4% within 5 h, and the maximum adsorption capacity of Cu2+ can reach 31.93 mg·g−1. The adsorption of Cu2+ on PB/PANI@CFs followed the pseudo-second order kinetic model and conformed to the Freundlich adsorption isothermal model. The PB-functionalized CFs provided new insights into the design of efficient and low-cost absorbents for heavy metal remediation. The proposed process solves two problems simultaneously, i.e., the utilization of environmentally friendly and biodegradable biomass resources and the adsorption of heavy metal ions, and is a good approach to achieve high-quality and sustainable development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3