Effect of Ultrafine Grains on the Coating Reaction and Anticorrosion Performance of Anodized Pure Aluminum

Author:

Wang Guowei,Song Dan,Zhou Zhikai,Klu Edwin Eyram,Liu Yi,Liang Ningning,Jiang Jinghua,Sun Jiapeng,Ma Aibin

Abstract

This work analyzes the effects of ultrafine aluminum (Al) grains on the anodizing coating reaction and anticorrosion performance of anodized industrial pure Al. Equal-channel angular pressing (ECAP) was applied to cast pure Al continuously for 16 passes at room temperature, and its average grain size was dramatically refined to about 1.5 μm. The ultrafine-grain (UFG) pure Al was further anodized with a cast sample via a parallel anodizing circuit at a constant total input current. Benefited by the higher volume fraction of grain boundaries and higher internal energy of the UFG substrate, the anodizing process of the ECAP-processed pure Al was significantly accelerated, showing a more intense initial anodizing reaction, a faster initial coating thickening, and much earlier porous-layer formation compared to the cast sample. As the anodizing reaction continued, the newly formed thicker coating of the ECAP-coated sample significantly hindered the diffusion process, weakening the thermodynamic advantage and decreasing the anodizing current of the ECAP-processed sample. During the entire anodizing duration, the ECAP-processed pure Al experienced gradually decreased anodizing current, while the cast sample experienced increased anodizing current. Because of the more total reaction, the ECAP-coated sample always maintained a relatively thicker coating and better anticorrosion performance during the entire anodizing duration.

Funder

Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference56 articles.

1. Aluminum and Aluminum Alloys;Davis,1993

2. Aluminum Alloys: Structure and Properties;Mondolfo,1976

3. Corrosion of Aluminium;Vargel,2004

4. Aluminum Alloys: Their Physical and Mechanical Properties;Hirsch,2008

5. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al–Zr–Er–Si alloy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3