Advanced Electrochemical Degradation of Organic Pollutants from Water using Sb-Doped SnO2/Ti Anode and Assisted by Granular Activated Carbon

Author:

Baciu Anamaria1,Orha Corina2,Nicolae Radu1,Nicolaescu Mircea12,Ilies Sorina3ORCID,Manea Florica1ORCID

Affiliation:

1. Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, Blv. Vasile Parvan No. 6, 300223 Timisoara, Romania

2. Condensed Matter Department, National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 P. Andronescu Street, 300254 Timisoara, Romania

3. “Coriolan Drăgulescu” Institute of Chemistry, Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania

Abstract

In this paper, mesoporous electrodes consisting of Sb-doped SnO2 deposited onto Ti plates that had undergone controlled corrosion under acidic medium were synthesized via a spin-coating method and morpho-structurally characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrodes were electrochemically tested to examine their degradation/mineralization through electrooxidation (EO) of doxorubicin (DOX) as a single component and multi-component, together with capecitabine (CCB) from the cytostatic class and humic acid (HA) from the natural organic matter (NOM) class in the absence/the presence of activated carbon (AC) as a particulate electrode. The best mineralization efficiency of 67% was achieved for DOX mineralization using Sb-doped SnO2 deposited onto a Ti plate that had undergone controlled corrosion with oxalic acid during the electrooxidation process. The presence of AC within the electrolysis process generated a synergistic effect of 52.75% for total organic carbon (TOC) parameter removal, which is in accordance with and significantly better than the results reported in the literature. The aspects related to the complex mechanism of DOX degradation and mineralization are discussed. The superiority of AC assisted electrooxidation, as electrochemical filtering (EF), was proved, considering simultaneous degradation and mineralization of mixture of doxorubicin, capecitabine and humic acid.

Funder

Romanian Ministry of Education and Research

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3