Dry Friction Properties of Friction Subsets and Angle Related to Surface Texture of Cemented Carbide by Femtosecond Laser Surface Texturing

Author:

Cheng Hang1,Zhou Fang1,Fei Zihao2

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

2. Guiyang High-Tech YiGe Electronic Co., Ltd., Guiyang 550022, China

Abstract

This paper investigated the use of laser surface texturing (LST) to improve the tribological properties of YG6X cemented carbide. Three different spaced groove textures were processed on the surface of the YG6X carbide samples using a femtosecond laser. Friction experiments and friction simulations were performed under two friction subsets and two friction directions. The testing results showed that when the area density was 46%, the texture surface was beneficial when sliding against Si3N4, but not beneficial in reducing the coefficient of friction when sliding against Ti6Al4V titanium alloy. At area densities of 23% and 15.3%, the texture surface was beneficial when sliding against Si3N4, but not beneficial when sliding against the Ti6Al4V titanium alloy. When selecting the friction direction at 45° to the area density of 15.3%, the texture surface was not beneficial when sliding against the Si3N4 and Ti6Al4V titanium alloy. Sliding with Si3N4, the higher the stress value, the more easily the material was destroyed, leading to an elevated coefficient of friction and wear area. Sliding with Ti6Al4V titanium alloy, the higher the stress value of Ti6Al4V titanium alloy, the more easily the Ti6Al4V titanium alloy wore and generated a large number of abrasive chips.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3