Photocatalytic Properties of g-C3N4–Supported on the SrAl2O4:Eu,Dy/SiO2

Author:

Mavengere ShielahORCID,Kim Jung-Sik

Abstract

Graphitic carbon nitride (g-C3N4) was supported on SrAl2O4:Eu,Dy-SiO2 by a colloidal-sol coating method to improve its light absorption property. Transmission electron microscopy (TEM) revealed that the nanoparticles of g-C3N4 were coated on sub-micron phosphor particles and nanoscale surface roughness was imparted by the SiO2-binder. Photoluminescence (PL) spectrum of the g-C3N4 supported on SrAl2O4:Eu,Dy exhibited a broadband emission from 400 to 650 nm. Increasing silica-binder in the g-C3N4/SrAl2O4:Eu,Dy composites suppressed the PL emission peak at 525 nm for SrAl2O4:Eu,Dy. Photocatalytic degradation activity was evaluated with 5 ppm methylene blue (MB) solutions under germicidal ultraviolet (UV) and visible (Vis) solar light illuminations. The UV/Vis photocatalytic efficiency was improved by supporting g-C3N4 on the SrAl2O4:Eu,Dy phosphor and with the addition of SiO2 as a binder. In addition, low silica addition effectively improved the adhesiveness of the g-C3N4 coating on the SrAl2O4:Eu,Dy surface. Recyclability tests of photocatalysis for the SrAl2O4:Eu,Dy-0.01M SiO2/50wt% g-C3N4 composites exhibited a remarkable stability by maintaining the degradation efficiencies above 90% in four cycles. Therefore, the composite of g-C3N4-supported SrAl2O4:Eu,Dy-SiO2 is a prospective photocatalyst activating under UV/Vis light irradiation for the elimination of environmental pollutants.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3